
InstantIO Manual
Patrick Dähne, Patrick.Daehne@igd.fraunhofer.de, 2008-03-18

Introduction
This document describes the InstantIO framework. The main task of this framework is to
efficiently handle input and output devices. But besides simply allowing access to devices, the
InstantIO framework also handles all preprocessing of the data provided by the devices. For
example, it does not only allow the application to grab video frames from a web cam, but also to
determine the position and orientation of the user by using these video frames (i.e. video base
tracking).

The intention is to create a library of small software modules that are specialized on simple tasks.
Some software modules act as device drivers, i.e. they produce or consume data streams. Others
act as filters, i.e. they transform incoming data streams. The modules are nodes of a data flow
graph, and they receive data from and send data to other modules via the edges of the graph. The
application developer should be able to build as much as possible of his application by simply
assembling these prefabricated software modules into a data flow graph, allowing him to
concentrate on the application logic instead of being stuck in the arduous task of creating the
basic infrastructure of his MR application.

It is possible to create the data flow graph by using a C++ or Java API, but this is not the
recommended proceeding because changing the graph requires to modify and recompile the
application. Instead, a special XML dialect has been developed that allows to store the structure
of the graph in a configuration file. When starting the application, the framework automatically
restores the graph from such a configuration file.

The configuration files can be edited by using a text editor. Another alternative is to create the
graph on the fly by using the integrated graphical user interface (GUI). The GUI allows to
completely modify the whole graph during the runtime of the application, and it is able to save
the current structure of the graph into a configuration file.

Unfortunately, when implementing MR applications in reality, it is usually not possible to stick in
all cases to this concept of a data flow graph. There are older, legacy software components from
previous projects that have to be ported to the new application. Or software components from
other project partners have to be integrated that are using a completely different software
architecture. Adjusting such components to a data flow graph is a tedious task that usually
requires writing ugly “wrapper” nodes that handle the communication between software
component and data flow graph.

To prevent the necessity of writing wrapper nodes, the InstantIO software API is split into two
layers: A low-level interface, and a high-level interface.

The low-level interface is the communication layer of the device management system. It provides
thread-safe communication channels between software components. Referring to the concept of a
data flow graph, the low-level interface consists of the edges between the nodes of the graph.

The high-level interface on the other hand allows building data flow graphs consisting of nodes
that are state machines, receive data values on incoming edges, change their state depending on
the incoming data, and send data values on their outgoing edges. The high-level interface is build

mailto:Patrick.Daehne@igd.fraunhofer.de

on top of the low-level interface.

This subdivision of the system into different layers makes it easy to integrate software
components that are not itself nodes of the data flow graph. Instead of writing wrapper nodes,
these components use the low-level interface to “inject” events into the scene graph.

Low-level interface and high-level interface are APIs provided by C++ libraries or Java
packages. These APIs are usually only relevant when integrating legacy software components
into the system, or when implementing new nodes of the data flow graph. Applications are
allowed to use these APIs to construct the data flow graph, but as mentioned before this is not the
recommended approach because doing so requires to modify and recompile the application when
the data flow graph needs to be changed. Instead, the preferred way to build the data flow graph
when starting the application is to parse a configuration file.

An important feature of the framework is that it allows the data flow graph to span different
machines on the network. MR applications quite often have to handle devices that are not
connected to the machine the application is running on, e.g. stationary tracking systems that
determine the position and orientation of a mobile device. Furthermore, they often must be able
to allow the user to communicate with other users (computer supported cooperative work), or
they need to receive data from stationary servers. The InstantIO framework allows the application
to communicate seamlessly other system components, no matter where they are located on the
network.

The following sections describe different aspects of the framework in more detail.

Low-level Interface
The low-level interface is the communication layer of the device management system. It provides
thread-safe communication channels used to exchange data between different software
components.

O u t s l o t < T >

c o n n e c t (i n s l o t : I n s l o t < T >) : v o i d
d i s c o n n e c t (i n s l o t : I n s l o t < T >) : v o i d
p u s h (v a l u e : T) : v o i d

I n s l o t < T >

c o n n e c t (o u t s l o t : O u t s l o t < T >) : v o i d
d i s c o n n e c t (o u t s l o t : O u t s l o t < T >) : v o i d
p o p () : T

B u f f e r e d I n s l o t < T >

N a m e s p a c e

a d d O u t s l o t (n a m e : S t r i n g , o u t s l o t : O u t s l o t < T >) : v o i d
r e m o v e O u t s l o t (n a m e : S t r i n g , o u t s l o t : O u t s l o t < T >) : v o i d
a d d I n s l o t (n a m e : S t r i n g , i n s l o t : I n s l o t < T >) : v o i d
r e m o v e I n s l o t (n a m e : S t r i n g , i n s l o t : I n s l o t < T >) : v o i d
a d d R o u t e (f r o m : S t r i n g , t o : S t r i n g) : v o i d
r e m o v e R o u t e (f r o m : S t r i n g , t o : S t r i n g) : v o i d
a d d E x t e r n a l R o u t e (i n t e r n a l : S t r i n g , e x t e r n a l : S t r i n g) : v o i d
r e m o v e E x t e r n a l R o u t e (i n t e r n a l : S t r i n g , e x t e r n a l : S t r i n g) : v o i d
a d d N a m e s p a c e (n a m e : S t r i n g , n a m e s p a c e : N a m e s p a c e) : v o i d
r e m o v e N a m e s p a c e (n a m e : S t r i n g , n a m e s p a c e : N a m e s p a c e) : v o i d

R o u t e

f r o m : S t r i n g
t o : S t r i n g

E x t e r n a l R o u t e

i n t e r n a l : S t r i n g
e x t e r n a l : S t r i n g

0 . . * 0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

0 . . *

Figure 1: UML diagram of the lowlevel interface

OutSlots and InSlots

OutSlots and InSlots are the basic communication primitives. OutSlots are used to send data to
other software components, and InSlots are used to receive data from other software components.
Both OutSlots and InSlots are typed, i.e. you have to specify what kind of data can be sent to or
received from the slot when you create it. In C++, the data type is simply a template parameter of
the template OutSlot and InSlot classes, in Java, you have to specify the data type by providing
the runtime class of the data type.

The following code examples demonstrate how to create an InSlot used to receive boolean data
values:

C++
#include <InstantIO/InSlot.h>

using namespace InstantIO;

InSlot<bool> myInSlot;

Java
import org.instantreality.InstantIO;

InSlot myInSlot = new InSlot(Boolean.class);

Creating a corresponding OutSlot used to send boolean data values looks like this:

C++
#include <InstantIO/OutSlot.h>

using namespace InstantIO;

OutSlot<bool> myOutSlot;

Java
import org.instantreality.InstantIO.*;

OutSlot myOutSlot = new OutSlot(Boolean.class);

OutSlots and InSlots can be connected when they are using the same data type. This connection
can be created manually, as shown in the following code example. Here, we connect the OutSlot
and the InSlot we have just created in the examples before:

C++
myOutSlot.connect(&myInSlot);

Java
myOutSlot.connect(myInSlot);

In this example, we connect the OutSlot to the InSlot. It is also possible to do it the other way
round, i.e. to connect the InSlot to the OutSlot, as shown in the following example. Both ways to
interconnect slots are completely equivalent.

C++
myInSlot.connect(&myOutSlot);

Java
myInSlot.connect(myOutSlot);

As already mentioned before, it is only possible to connect slots that have the same data type.
Trying to connect slots of different data types will not result in an error condition, instead the
connect() method silently fails.

Even though it is possible to connect InSlots and OutSlots manually, this is only done in very rare
circumstances. To establish a manual connection, you have to know the slots at compile time, but
usually, you have to create connections between slots of different software components that are
not known at compile time. For this reason, there are means to connect OutSlots and InSlots to
each other automatically by following the rules established by the application developer. We will
explain this mechanism later on in the following subsection.

Of course, it is also possible to disconnect OutSlots and InSlots manually:

C++
myOutSlot.disconnect(&myInSlot);

Java
myOutSlot.disconnect(myInSlot);

Instead of disconnecting the InSlot from the OutSlot, you can also disconnect the OutSlot from
the InSlot – both ways are completely equivalent:

C++
myInSlot.disconnect(&myOutSlot);

Java
myInSlot.disconnect(myOutSlot);

OutSlots can be connected to an arbitrary number of InSlots. When you write a data value into an
OutSlot, it transfers this data value to all InSlots it is currently connected to. When the OutSlot is
not connected to any InSlot, the data value simply gets lost. Likewise, InSlots can be connected
to an arbitrary number of OutSlots. InSlots receive data values from all OutSlots they are
currently connected to. It is not possible to determine from which OutSlot a data value actually
came from.

O u t s l o t I n s l o t 2

I n s l o t 3

I n s l o t 1

Figure 2: OutSlots can be connected to more than one InSlot. Data values written into an OutSlot are copied
to all InSlots connected to that OutSlot

O u t s l o t 2

O u t s l o t 1

O u t s l o t 3

I n s l o t

Figure 3: InSlots can be connected to more than one OutSlot. They receive data values written into any of the

connected OutSlots.

It is also possible to interconnect the same OutSlot and InSlot more than once. In this case, when
you write a data value in the OutSlot, it is nevertheless transferred only once from the OutSlot to
the InSlot. But when you connect two slots n times, you also have to disconnect them n times
before they actually get disconnected. Trying to disconnect slots that are not interconnected does
not result in an error condition, instead the disconnect() silently fails.

Writing data values into OutSlots to send them to other software components is straightforward.
You simply push the data values into the OutSlot. In the following example, we send a boolean
data value to all InSlots connected to our OutSlot:

C++
bool value = …; // true or false
myOutSlot.push(value);
Java
Boolean value = new Boolean(…); // true or false
myOutSlot.push(value);

When a software component writes data values into an OutSlot, the OutSlot automatically
transfers a copy of these data values to all InSlots it is currently connected to. Data values can be
given a time stamp, but the OutSlot automatically provides them with a time stamp (the current
system time) when the application does not give them a time stamp. To attach an application-
specific time stamp to a data value, the InstantIO Data object is used. The Data object combines a
data value with a time stamp. The following code example demonstrates how to use the Data
object:

C++
bool value = …; // true or false
unsigned long timeStamp = …;
Data<bool> data;
data.setValue(value);
data.setTimeStamp(timeStamp);
myOutSlot.push(data);
Java
Boolean value = new Boolean(…); // true or false
long timeStamp = …;
Data data = new Data();
data.setValue(value);
data.setTimeStamp(timeStamp);
myOutSlot.push(data);

It is common practice that the time stamp is specified in milliseconds since midnight January 1.,
1970 UTC. Nevertheless, the time stamp is not used by the InstantIO system in any way, it is
simply transferred untouched to the InSlots. So you can actually transfer any kind of data in the
time stamp.

The last data value written to an OutSlot is stored in the OutSlot and can be accessed using the
getValue() method. This can be used for optimization purposes, i.e. to prevent sending duplicate
data values. Consider for example a tracking system that calculates the current position ten times
per second. When you do not move, the tracking system always determines the same position

(well, in practice this will never happen due to jitter, but this is just an example). It does not make
much sense to send the same position value to other software components every 100
milliseconds, because it is just a waste of system resources. For this reason, you can check if the
position actually changed:

C++
Vec3f newValue = …;
if (newValue != static_cast<Vec3f>(myOutSlot.getValue()))
 myOutSlot.push(newValue);
Java
Vec3f newValue = new Vec3f(…);
if (newValue.equals(myOutSlot.getValue().getValue()))
 myOutSlot.push(newValue);

(myOutSlot.getValue().getValue() in the Java example is not a typo, myOutSlot.getValue() returns
a Data object that combines a data value with a time stamp. To get the actual data value, you
have to call the getValue() method of the Data object. For the same reason, you need that ugly
static_cast in the C++ example.)

Another possibility to optimize the performance of your code is to check if there are actually
InSlots connected to the OutSlot before you actually generate new data values. Sometimes,
generating data values is quite a time-consuming task. Consider for example a video tracking
system that has to determine the position of objects from video images. When there is no one
interested in getting the position values (i.e. when there is no InSlot connected to the
corresponding OutSlot), you can skip the whole position estimation and save system resources.
To check if there are InSlots connected to the OutSlot, you can call the isConnected() method:

C++
if (myOutSlot.isConnected())
{
 // Time consuming calculation of value
 Vec3f value = …;
 myOutSlot.push(value);
}
Java
if (myOutSlot.isConnected())
{
 // Time consuming calculation of value
 Vec3f value = new Vec3f(…);
 myOutSlot.push(value);
}

The counterpiece of OutSlots are InSlots. InSlots receive copies of data values written to any
OutSlots they are currently connected to. Getting new data values from InSlots is straightforward
– you simply call the pop() method:

C++
bool value = myInSlot.pop();
Java
Boolean value = (Boolean) myInSlot.pop();

The pop() method blocks until new data is available in the InSlot. For non-blocking operation,

you can check if new data is available before calling pop() by calling the empty() method:

C++
if (!myInSlot.empty())
{
 bool value = myInSlot.pop();
 // process the new data value
 …
}
Java
if (!myInSlot.empty())
{
 Boolean value = (Boolean) myInSlot.pop();
 // process the new data value
 …
}

When calling the pop() method, the data value is removed from the InSlot, i.e. each call to pop()
returns a new data value. To get the newest data value without actually removing it from the
InSlot, you can call the top() method. top() blocks until a new data value is available. It then
returns that data value from the InSlot without removing it, i.e. the next call to either top() or
pop() returns the same data value:

C++
bool value = myInSlot.top();
Java
Boolean value = (Boolean) myInSlot.top();

The examples for the pop() and top() methods shown so far just demonstrate how to get the data
values. Of course it is also possible to retrieve the corresponding timestamps. When using C++,
pop() and top() actually return InstantIO Data objects that are automatically casted to the data
values in the examples above. To get the timestamps, you simply have to use these InstantIO
Data objects:

C++
Data<bool> data = myInSlot.pop();
unsigned long timestamp = data.getTimeStamp();
bool value = data.getValue();

In Java, there is no such concept of automatic type transformations. For that reason, you have to
use use two special methods instead, popData() and topData():

Java
Data data = myInSlot.popData();
Long timestamp = data.getTimeStamp()
Boolean value = (Boolean) data.getValue();

InSlots by default are not buffered, i.e. when a new data value is received from an OutSlot before
reading the previous value, the previous value gets lost. That behaviour in many cases is desired,
i.e. when you receive position values from a tracking system, you are usually only interested in
the most recent position. But in other cases, you need to get all data values, i.e. when receiving
button press events. For this reason, a special descendant of the InSlot class exists, the

BufferedInSlot, that buffers data values. When you create such a BufferedInSlot, you have to
specify the buffer size, i.e. the number of data values that can be buffered:

C++
BufferedInSlot<bool> myBufferedInSlot(10);
Java
BufferedInSlot myBufferedInSlot =
 new BufferedInSlot(Boolean.class, 10);

In both examples, a BufferedInSlot with a buffer size of 10 data values is created. When data
values at the InSlot, they are added to the buffer. When there is no free space in the buffer, the
oldest data value in the buffer gets overwritten. When you call the pop() method, the oldest data
value is removed from the buffer and returned. Besides the fact that BufferedInSlots buffer data
values, they behave exactly like normal InSlots, unbuffered InSlots.

Just like OutSlots, InSlots have a isConnected() method that allows to check if any OutSlot is
connected to the InSlot, even though that method is rarely used:

C++
if (myInSlot.isConnected())
{
 …
}
Java
if (myInSlot.isConnected())
{
 …
}

Both OutSlots and InSlots allow to add so-called listeners that get notified when the status of the
slot changes. You have to inherit your own class from the abstract listener interface and
implement the methods of the interface. Then, you have to create an instance of your listener
class and add it to the slot.

For OutSlots, you have to implement the Listener interface declared inside the OutSlot class.
That interface has two methods you have to implement, startOutSlot(…) and stopOutSlot(…).
startOutSlot(…) gets called when the first InSlots connects to the OutSlot, i.e. when you have to
start writing data values into the OutSlot. stopOutSlot(…) gets called when the last InSlot
disconnects from the OutSlot, i.e. when have to stop writing data values into the OutSlot. To add
your listener to the OutSlot, call its addListener(…) method. To remove your listener from the
OutSlot, call its removeListener(…) method.

C++
class MyOutSlotListener: public BasicOutSlot::Listener
{
 virtual ~MyOutSlotListener() {};
 virtual void startOutSlot(BasicOutSlot &outSlot)
 {
 // Gets called when the first InSlot connects to
 // the OutSlot

 };
 virtual void stopOutSlot(BasicOutSlot &outSlot)
 {
 // Gets called when the last InSlot disconnects from
 // the OutSlot
 };
};
…
MyOutSlotListener myOutSlotListener;
OutSlot<bool> myOutSlot;
myOutSlot.addListener(myOutSlotListener);
…
myOutSlot.removeListener(myOutSlotListener);
Java
class MyOutSlotListener implements OutSlot.Listener
{
 public void startOutSlot(OutSlot outSlot)
 {
 // Gets called when the first InSlot connects to
 // the OutSlot
 };
 public void stopOutSlot(OutSlot outSlot)
 {
 // Gets called when the last InSlot disconnects from
 // the OutSlot
 };
};
…
MyOutSlotListener myOutSlotListener = new MyOutSlotListener();
OutSlot myOutSlot = new OutSlot(Boolean.class);
myOutSlot.addListener(myOutSlotListener);
…
myOutSlot.removeListener(myOutSlotListener);

For InSlots, you have to implement the Listener interface declared inside the InSlot class. That
interface has three methods you have to implement, startInSlot(…), stopInSlot(…) and
newData(…). startInSlot(…) gets called when the first OutSlots connects to the InSlot, i.e. when
you have to start reading data values from the InSlot. stopInSlot(…) gets called when the last
OutSlot disconnects from the InSlot, i.e. when have to stop reading data values from the InSlot.
newData(…) gets called when there is a new data value available for receival from the InSlot. To
add your listener to the InSlot, call its addListener(…) method. To remove your listener from the
InSlot, call its removeListener(…) method.

C++
class MyInSlotListener: public BasicInSlot::Listener
{
 virtual ~MyInSlotListener() {};
 virtual void startInSlot(BasicInSlot &InSlot)
 {
 // Gets called when the first OutSlot connects to
 // the InSlot
 };
 virtual void stopInSlot(BasicInSlot &inSlot)
 {
 // Gets called when the last OutSlot disconnects from
 // the InSlot
 };
 virtual void newData(BasicInSlot &inSlot)
 {
 // Gets called when there is new data available for
 // receival from the InSlot
 }
};
…
MyInSlotListener myInSlotListener;
InSlot<bool> myInSlot;
myInSlot.addListener(myInSlotListener);
…
myInSlot.removeListener(myInSlotListener);

Java
class MyInSlotListener implements InSlot.Listener
{
 public void startInSlot(InSlot inSlot)
 {
 // Gets called when the first OutSlot connects to
 // the InSlot
 };
 public void stopInSlot(InSlot inSlot)
 {
 // Gets called when the last OutSlot disconnects from
 // the InSlot
 };
 public void newData(InSlot inSlot)
 {
 // Gets called when there is new data available for
 // receival from the InSlot
 }
};
…
MyInSlotListener myInSlotListener = new MyInSlotListener();
InSlot myInSlot = new InSlot(Boolean.class);
myInSlot.addListener(myInSlotListener);
…
myInSlot.removeListener(myInSlotListener);

Keep in mind that the methods of the Listener objects usually get called from another thread or
even multiple other threads – so make sure that your implementations are thread-safe!

Namespaces and Routes

Namespaces and Routes are components of the mechanism that automatically connects OutSlots
and InSlots. As mentioned before, applications are able to connect OutSlots and InSlots
manually. But the problem is that usually software components that need to exchange data do not
know about the slots of other software components. Therefore, we need a more abstract way of
connecting OutSlots and InSlots.

This level of abstraction is performed by Namespaces and Routes. An application creates
Namespace objects. Then, it adds all its OutSlots and InSlots to these Namespaces. When doing
this, it has to give a name to each slot. This name neither has to be unique, nor it has to follow
any conventions, it simply is a label. For example, in the case of a tracker that tracks the position
of the user’s head, the application would add an OutSlot that provides position and orientation
data to the Namespace under the name “Tracker 1/Sensor 1”, and an InSlot that receives position
and orientation data under the name “Head position”. Case does not matter for labels.

N a m e s p a c e

F l o a t - S e n d e r 2S F F l o a t

F l o a t - S e n d e r 1S F F l o a t
F l o a t - R e c e i v e rS F F l o a t

B o o l e a n - S e n d e rS F B o o l B o o l e a n - R e c e i v e rS F B o o l

R o u t e s :
F r o m
*
B o o l e a n - S e n d e r

T o
F l o a t - R e c e i v e r
B o o l e a n - R e c e i v e r

Figure 4: Namespaces and Routes are used to connect OutSlots and InSlots on a higher level of abstraction

The following example demonstrates how to create Namespace objects and how to add slots to
them using the addOutSlot(…) and addInSlot(…) methods of the Namespace:

C++
Namespace ns;

ns.addOutSlot("Tracker 1/Sensor 1", &myOutSlot);
ns.addInSlot("Head position", &myInSlot);
Java
Namespace ns = new Namespace();

ns.addOutSlot("Tracker 1/Sensor 1", &myOutSlot);
ns.addInSlot("Head position", &myInSlot);

It is perfectly ok to add slots more than once to a Namespace using the same or a different label.

To remove slots from a Namespace, use the removeOutSlot(…) and removeInSlot(…) methods.
When calling these methods, you have to specify the labels you gave the slots when you added
them to the Namespace:

C++
ns.removeOutSlot("Tracker 1/Sensor 1", &myOutSlot);
ns.removeInSlot("Head position", &myInSlot);
Java
ns.removeOutSlot("Tracker 1/Sensor 1", &myOutSlot);
ns.removeInSlot("Head position", &myInSlot);

When you add a slot n times under the same label to the Namespace, you also have to remove the
slot n times before it actually gets removed from the Namespace.

To connect OutSlots and InSlots, the application now adds Routes to the Namespace that map
OutSlot names to InSlot names. For example, to connect the OutSlot of the tracking component
with the InSlot of the rendering component in the example given above, the application would

add a Route to the Namespace that maps the name “Tracker 1/Sensor 1” to the name “Head
position” (again, case does not matter):

C++ / Java
ns.addRoute("Tracker 1/Sensor 1", "Head position");
ns.enable();

It is not possible to add a Route more than once to a Namespace – when you try to add a Route
that already exists in the Namespace, the call is silently ignored.

You can also use wildcards like “?”, “*” and square brackets “[]” in Routes. “?” stands for
exactly one arbitrary character. “*” stands for an arbitrary number of arbitrary characters. In
square brackets, you can specify the characters that are allowed at that position. “[1-9]” means
that the characters from “1” to “9” are allowed at this position. “[aeiou]” means that the
characters “a”, “e”, “i”, “o”, and “u” are allowed at this position. To use the wildcard characters
without their special meaning, escape them using the backslash character “\”.

Routes automatically connect OutSlots and InSlots in the Namespace when:

• OutSlot and InSlot have the same type.

• The label of the OutSlot in the Namespace matches the first label of the Route (the “from”
part of the Route).

• The label of the InSlot in the Namespace matches the second label of the Route (the “to”
part of the Route).

You do not have to create Routes for OutSlots and InSlots that have the same label – slots with
the same label connect automatically when their types match.

Before a Namespace actually connects OutSlots and InSlots as specified by the Routes, it has to
be enabled by calling the enable() method. The order of method calls is not important – you can
also enable the Namespace directly after creating it and before adding the slots and the Routes.
You just have to keep in mind that the Namespace only connects slots when it is enabled.

To remove a Route from a Namespace, call the removeRoute() method. This does not only
remove the Route, but also disconnects all slots affected by this Route. When you try to remove a
Route that does not exist, the call is silently ignored. To disconnect all slots in the Namespace,
you can simply call the disable() method of the Namespace:

C++ / Java
ns.removeRoute("Tracker 1/Sensor 1", "Head position");
ns.disable();

The mechanism of namespaces and routes allows software components to connect OutSlots and
InSlots without actually knowing the instances of the slots. But a problem still remains: How can
different software components add their slots to the same Namespace instance? Somehow they
have to agree on a single Namespace instance. The solution is a special “Root” Namespace. This
namespace is a singleton provided by the device management system and is the central place
where software components exchange data. You get the single instance of the Root Namespace
by calling the static the() method of the Root object:

C++
Root &root = Root::the();

Java
Root root = Root.the();

You can use the Root object the same way as a Namespace object – the Root class actually is a
descendant of the Namespace class. The only difference is that you can create any number of
instances of Namespace objects, but there is only one instance of the Root object per process. For
this reason, the single Root object is the central place where different software components
exchange data.

Subnamespaces and External Routes

Namespaces and Routes are an important mechanism to interconnect OutSlots and InSlots of
different software components. But real applications have to deal with a large number of slots,
and putting them all into one single Namespace results in a very unclear application structure.
The solution is the concept of Subnamespaces. You cannot only add slots to Namespaces, you
can also add other Namespaces as Subnamespaces, allowing to build a hierarchical tree of
Namespaces. In this tree, “External Routes” can be used to export slots from Subnamespaces to
their parent Namespaces. This allows to structure the system into smaller units. The application
developer is able to hide implementation details into Subnamespaces.

R o o t

S u b n a m e s p a c e 1 S u b n a m e s p a c e 2

S u b n a m e s p a c e 3

Figure 5: Namespaces can be nested. A single Root namespaces is provided by the system

To add a Namespace to another Namespace, use the addNamespace(…) method. Just like slots,
you have to label subnamespaces when you add them to Namespaces, but unlike slots, this label
has to be unique, and you can put a Namespace only once into another Namespace:

C++
Namespace ns;
std::auto_ptr<Namespace> subns = new Namespace;

std::string label = ns.addNamespace("Subnamespace", subns);

Java
Namespace ns = new Namespace();
Namespace subns = new Namespace();

ns.addNamespace("Subnamespace", subns);

The addNamespace(…) method takes the label and a pointer to the subnamespace as parameters.
When the label already exists in the parent Namespace, this method automatically makes the
label unique by adding a number to the label. It returns the unique name the subnamespace
actually got in the parent Namespace. The parent Namespace takes full control over the
subnamespace, i.e. it automatically deletes all subnamespaces when it gets deleted, and it enables
resp. disables all subnamespaces when it gets enabled or disabled.

There exists also an overloaded convenience version of addNamespace(…) that does not take a
label. In this case, the method automatically creates a unique label, usually “Namespace”
followed by a number:

C++
Namespace ns;
std::auto_ptr<Namespace> subns = new Namespace;

std::string label = ns.addNamespace(subns);
Java
Namespace ns = new Namespace();
Namespace subns = new Namespace();

ns.addNamespace(subns);

To remove a subnamespace from a Namespace, use the removeNamespace(…) method. This
method takes one parameter, the unique label returned by the previous call to addNamespace(…):

C++
std::auto_ptr<Namespace> subns = ns.removeNamespace(label);
Java
Namespace subns = ns.removeNamespace(label);

removeNamespace(…) returns the subnamespace it removed from the parent namespace. You are
free to add this Namespace to another Namespace, or to use it any way you need to. When you do
not need the Namespace anymore, you have to delete it.

Putting a Namespace into another Namespaces of course only makes sense when you export slots
from the subnamespace into the parent Namespace. To do that, you have to create External
Routes. Like normal Routes, External Routes consist of two labels that specify the internal name
of the slot, i.e. its name in the subnamespace, and the external name of the slot, i.e. its name in
the parent Namespace. To create an External Route, call the addExternalRoute(..) method of the
subnamespace:

C++ / Java
subns.addExternalRoute("Tracker 1/Sensor 1", "Head position");

The addExternalRoute(…) takes two labels as parameters, the internal label, and the external
label. In the example above, all OutSlots and InSlots with the label “Tracker 1/Sensor 1” in the
subnamespace get exported under the label “Head position” into the parent Namespace.

For the internal label, you can use the wildcards “*”, “?” and “[]”. “?” stands for exactly one
arbitrary character. “*” stands for an arbitrary number of arbitrary characters. In square brackets,
you can specify the characters that are allowed at that position. “[1-9]” means that the characters
from “1” to “9” are allowed at this position. “[aeiou]” means that the characters “a”, “e”, “i”, “o”,
and “u” are allowed at this position. To use the wildcard characters without their special meaning,
escape them using the backslash character “\”.

For the external label, you cannot use wildcards, instead you can two placeholders:

• “{SlotLabel}” gets replaced by the original name of the slot in the subnamespace.

• “{NamespaceLabel}” gets replaced by the name of the subnamespace.

So for example, to export all slots under their original name into the parent namespace, you just
have to add one single External Route:

C++ / Java
subns.addExternalRoute("*", "{SlotLabel}");

To export all slots under their original name, but prefixed by the name of the subnamespace, add
the following External Route:

C++ / Java
subns.addExternalRoute("*", "{NamespaceLabel}/{SlotLabel}");

Keep in mind that the subnamespace has to be enabled, otherwise External Routes do not become
active.

To remove an External Route, simply call the removeExternalRoute(…) method:

C++ / Java
subns.removeExternalRoute("Tracker 1/Sensor 1", "Head position");

J o y s t i c k / Y - A x i sY - A x i s

J o y s t i c k / X - A x i sX - A x i s

F i r e B u t t o n ; J o y s t i c k / B u t t o n # 1

J o y s t i c k

B u t t o n # 1

E x t e r n a l R o u t e s :
I n t e r n a l
*
B u t t o n # 1

E x t e r n a l
{ N a m e s p a c e L a b e l } / { S l o t L a b e l }
F i r e B u t t o n

Figure 6: External Routes export slots into the parent namespace

Data Types and Smart Pointer

As mentioned before, the InstantIO system is able to handle any data type. When creating an

OutSlot or an InSlot, the application is free to specify any data type that can be transferred by that
slot. Nevertheless, the InstantIO system provides some standard data types for position values,
rotations, matrices, video frames etc. These data types do not have functionality, they are not
meant to be used inside the application to represent vectors and matrices. Instead, they are only
containers that allow to transfer data values in a standardized way. This ensures interoperability
between different software components, i.e. software components that stick to these standard data
types ensure that they will smoothly collaborate with software components written by other
persons or for other projects.

The following table shows all data types provided by the system. For more information about
how to use these data types, see the respective API documentation.

C++ Java Description
InstantIO::Color org.instantreality.InstantIO.Color A vector of three float

components storing the red,
green and blue color
components as values
between 0 (no intensity) and
1 (full intensity)

InstantIO::ColorRGBA org.instantreality.InstantIO.ColorRGBA A vector of four float
components storing the red,
green, blue and alpha color
components as values
between 0 (no intensity) and
1 (full intensity)

InstantIO::Image org.instantreality.InstantIO.Image A bitmap for storing video
frames

InstantIO::Matrix3d org.instantreality.InstantIO.Matrix3d A 3x3 matrix of double
components

InstantIO::Matrix3f org.instantreality.InstantIO.Matrix3f A 3x3 matrix of float
components

InstantIO::Matrix4d org.instantreality.InstantIO.Matrix4d A 4x4 matrix of double
components

InstantIO::Matrix4f org.instantreality.InstantIO.Matrix4f A 4x4 matrix of float
components

InstantIO::Rotation org.instantreality.InstantIO.Rotation A rotation stored in a
quaternion

InstantIO::Time – An unsigned long value
counting milliseconds

InstantIO::Vec2d org.instantreality.InstantIO.Vec2d A vector of two double
components (x and y)

InstantIO::Vec2f org.instantreality.InstantIO.Vec2f A vector of two float
components (x and y)

InstantIO::Vec3d org.instantreality.InstantIO.Vec3d A vector of three double
components (x, y and z)

InstantIO::Vec3f org.instantreality.InstantIO.Vec3f A vector of three float
components (x, y and z)

InstantIO::Vec4d org.instantreality.InstantIO.Vec4d A vector of four double
components (x, y, z and w)

InstantIO::Vec4f org.instantreality.InstantIO.Vec4f A vector of four float
components (x, y, z and w)

Outslots copy data values written into them to all inslots that are connected to the outslot. This is
no problem for data values like vectors or rotations, but it would be extremely inefficient for data
types like video frames that require to copy a large amount of memory. For this reason, on C++,
thread-safe smart pointers are used for such kinds of data types. Instead of copying the data
values, the outslots just copy the pointer to the data value. The memory consumed by the data
value is automatically released when the last pointer to the data is destroyed. See the API
documentation for InstantIO::SmartPtr for more information about how to use smart pointers. On
Java, all data values are actually pointers to data objects, and copying data values into InSlots just

means copying pointers. For this reason, there is no need for a special smart pointer concept in
the InstantIO Java language binding.

High-level Interface
In contrast to the low-level interface that deals with the communication between different
software components, the high-level interface allows to build data flow graphs consisting of
nodes that are state machines, receive data values on incoming edges, change their state
depending on the incoming data, and send data values on their outgoing edges.

Nodes

Nodes are the core component of the data flow graph. There are four types of nodes:

1. Nodes that produce data. These are usually device drivers of input devices, nodes that
replay data streams stored on a hard disk, timers etc.

2. Nodes that transform data. Examples are nodes that transform coordinate systems, or
video tracking systems that take video frames and transform them to position and
orientation values.

3. Nodes that consume data. These are usually device drivers of output devices, nodes that
store data streams on a hard disk, etc.

4. Nodes that do not deal with data in any way. This sounds strange at a first glance, but our
system currently has already three nodes of this kind: The “Network” node that makes the
system network transparent, the “Web” node that provides a user interface to the
framework, and the “Inline” node that allows integrate subgraphs stored in configuration
files.

To create a new node, the developer has to derive a new class from the abstract node base class.
The base node class itself is a descendant of the namespace class, i.e. each node inherits the
namespace interface and can be handled exactly the same way.

Then, the programmer has to create the outSlots and inSlots used to communicate with other
nodes. This is usually done in the constructor. Sometimes the number of slots varies depending
on the device that is actually handled by the node, e.g. when operating a joystick with two axes
and one button, the joystick device driver node creates two float outslots and a boolean outslot.
All slots are given a self-explaining name and are added to the node (remember that nodes are
derived from namespaces). For example, the two float outslots of the joystick node get the labels
“Joystick 1/X-Axis” and “Joystick 1/Y-Axis”, and the boolean outslot gets the label “Joystick
1/Button #1”. Nodes usually export all slots contained in them to the parent namespace.

An important design decision that has to be made by the developer of a new node is whether the
node uses its own thread or not. Device driver nodes for input devices usually always need to
have an own thread, because they have to listen to the port the device is connected to. All other
types of nodes do not necessarily need to have their own thread. For example, filter nodes that
transform position values into another coordinate system usually directly calculate the new values
and write them to the outslots when they are notified by the inslot that new data is available for
reading. This means that they are in fact driven by the threads of the device driver nodes that
provided the incoming data values. On the other hand, filter nodes that have to perform lengthy
calculations, like video trackers, usually get their own threads.

When the application builds the data flow graph, it creates the nodes, adds them to a namespace,
and connects their outslots and inslots using routes.

	InstantIO Manual
	Introduction
	Low-level Interface
	OutSlots and InSlots
	Namespaces and Routes
	Subnamespaces and External Routes
	Data Types and Smart Pointer

	High-level Interface
	Nodes

