NurbsTextureCoordinate
NurbsTextureCoordinate describes a 3D NURBS surface in the parametric domain of its surface host, specifying mapping of texture onto the surface. The SFNode controlPoint field can contain a single Coordinate or CoordinateDouble node.
Inheritance
Code
XML encoding
<NurbsTextureCoordinate controlPoint='' weight='' uDimension='0' uKnot='' uOrder='3' vDimension='0' vKnot='' vOrder='3' logFeature='' />
Classic encoding
NurbsTextureCoordinate { controlPoint [] weight [] uDimension 0 uKnot [] uOrder 3 vDimension 0 vKnot [] vOrder 3 logFeature [""] }
Interface
Filter: X3D only | Avalon only | All
id | Name | DataType | PartType | Default | ValueType | Description |
---|---|---|---|---|---|---|
controlPoint | MFVec2f | inputOutput | control points are specified in (u, v) coordinates of texture space | |||
logFeature | MFString | inputOutput | state, child, parent, route, eventIn, eventOut | controls the logging of changes, state: log state changes (e.g. live), child: log child add/remove, parent: log parent add/remove, route: log route add/remove; eventIn: log receiving of events, eventOut: log sending of events: guiView, runtime system should create node-view, guiEdit: runtime system should create node-editeverything: log everything | ||
metadata | SFNode | inputOutput | MetadataObject | container for payload metadata inside MetadataSet element | ||
uDimension | SFInt32 | initializeOnly | 0 | Number of control points in u dimension. | ||
uKnot | MFDouble | initializeOnly | Knot vector, where size = number of control points + order of curve. | |||
uOrder | SFInt32 | initializeOnly | 3 | Define order of surface by polynomials of degree = order-1. | ||
vDimension | SFInt32 | initializeOnly | 0 | Number of control points in v dimension. | ||
vKnot | MFDouble | initializeOnly | Knot vector, where size = number of control points + order of curve. | |||
vOrder | SFInt32 | initializeOnly | 3 | Define order of surface by polynomials of degree = order-1. | ||
weight | MFFloat | inputOutput | Output values for linear interopolation, each corresponding to knots. Hint: number of weights must match number of knots! |